ARG-SUPPRESSION T E C H N O L O G I E S

ARC-FLASH SUPPRESSION IN MICROSECONDS

7900 INTERNATIONAL DR STE 300, BLOOMINGTON, MN 55425 www.ArcSuppressionTechnologies.com

Introducing an Arc-Flash Suppression Factor (AFSF)

By Reinhold Henke and Robert P. Thorbus

Arc-Flash (AF)

During an arc-flash (AF) the arc-flash plasma turns into the dominant power load burning between the power conductors, being supported by the current the power infrastructure can supply; destroying everything in its path. The plasma current will be less than the bolted Short Circuit Current Rating (SCCR; e.g., transformer or battery) or the Interrupt Current Rating (ICR; e.g., circuit breaker or fuse) value.

The most prevalent form of arc-flash initiation is from a dielectric breakdown (F-Arc-Flash), also referred to as "flash-over".^{1,2} Figure I shows an **AF** simplified, equivalent schematic diagram for comparison purposes.

Electronic Arc-Flash Suppressor (EAFS)

An Electronic Arc-Flash Suppressor (EAFS) within microseconds (µs) senses, detects, and confirms arc-flash initiation and plasma ignition (either F-Arc or T-Arc).³ Once ignition is confirmed, the EAFS immediately creates a short circuit condition, causing the plasma to extinguish and the circuit breaker to trip, leaving behind a few microseconds of **Residual** ("abbreviated") Arc-Flash (RAF).

An EAFS is comprised of three main elements: (1) an arc initiation detector connected to (2) an arc plasma ignition detector connected to (3) a trigger-able arc plasma extinguisher. An EAFS should be agnostic of load type, power frequency, and power factor. Figure II shows a RAF

Arc-Flash Suppression Factor (AFSF)

An Arc-Flash Suppression Factor (AFSF) is the ratio of AF energy (E_{AF}) over RAF energy (E_{RAF}) (Fig. 3). The AFSF is a dimensionless, quantitative figure of merit allowing useful comparisons among different methods and means of arc-flash suppression.

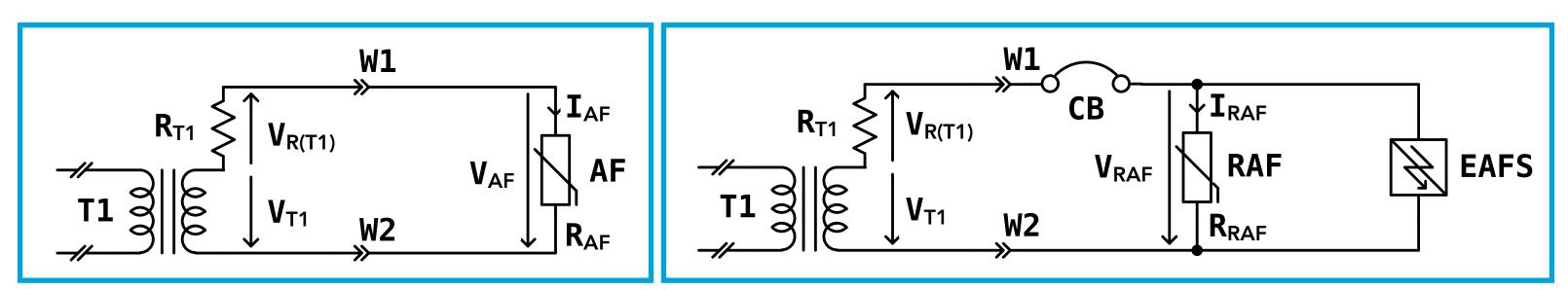


Fig. 1: Simplified, equivalent schematic Fig. 2: Schematic diagram of an Electronic Arc-Flash diagram for an Arc-Flash (AF); see Suppressor (EAFS), and related Residual (microseconds) table I Arc-Flash (RAF); see table II

Note: Infrastructure resistance and thermal effects are not included in these example calculations

T1 Secondary Open Circuit Voltage (nominal)	V _{T1}	480 V
T1 Bolted Short Circuit Current	I _{T1(BSC)}	20,000 A
Arc-Flash Duration	T _{AF}	0.167 s
Arc-Flash Voltage	V _{AF}	50 V
T1 Internal Resistance	Rt1	0.0240 Ω
T1 Internal Power Dissipation During AF	Pr(t1)	8,704,167 W
T1 Internal Energy Release During AF	Wr(t1)	1,303,992 J
Arc-Flash Plasma Resistance	R _{AF}	0.00279 Ω
Arc-Flash Plasma Current	I _{AF}	17,917 A
Arc-Flash Plasma Power	P _{AF}	895,833 W
<mark>Arc-Flash Plasma Energy</mark>	E _{AF}	149,604 J

Table I: Arc-Flash (AF) parameters, symbols, & definitions; example of calculated or measured values; see figure 1

T1 Secondary Open Circuit Voltage (nominal)	V _{T1}	480 V
T1 Bolted Short Circuit Current	I _{T1(BSC)}	20,000 A
Residual Arc-Flash Duration	T _{raf}	0.00005 s
Residual Arc-Flash Voltage	V _{raf}	50 V
T1 Internal Resistance	Rt1	0.0240 Ω
T1 Internal Power Dissipation During RAF	Pr(t1)	8,704,167 W
T1 Internal Energy Release During RAF	Wr(t1)	390 J
Residual Arc-Flash Plasma Resistance	R _{RAF}	0.00279 Ω
Residual Arc-Flash Plasma Current	I _{RAF}	17,917 A
Residual Arc-Flash Plasma Power	P _{RAF}	895,833 W
<mark>Residual Arc-Flash Plasma Energy</mark>	E _{RAF}	45 J

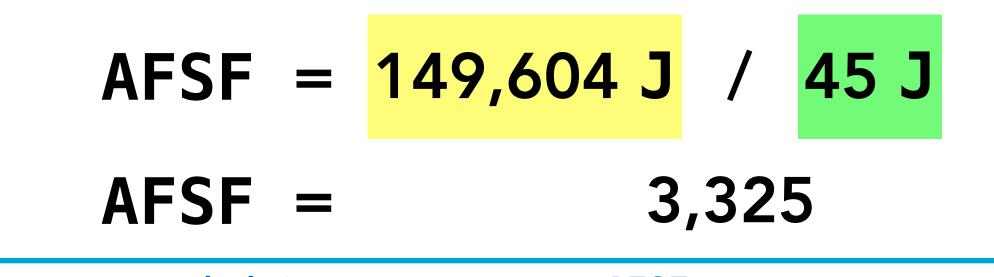


Fig. 3: Arc-Flash Suppression Factor (AFSF)

Table II: Residual Arc-Flash (RAF) parameters, symbols, & definitions; example of calculated or measured values; see figure 2

Why Microseconds Matter

While milliseconds (ms) may seem of short duration, every millisecond that an arc-flash plasma burns, more destruction occurs, including the potential for infrastructure destruction as well as human injuries and/or deaths. Shortening arc-flash events from milliseconds to microseconds, yields a many-thousand-fold reduction of the arc-flash event's energy and damage.

For example, the energy contained in an arc-flash that is extinguished in 50µs is 1000 times less than the energy contained in an arc-flash burning for 50ms. Given that typical U.S. arc-flash calculations are based on ten 60Hz cycles, or 167ms, duration⁴, EAFS reduces potential arcflash damage by a factor of **3,325** ... after the approximate **50µs**, no further calculations are needed.

Using a ballistic artillery projectile as an analogy for an arc-flash, an electronic arc-flash suppressor would stop the projectile within a few inches from the shell casing ... leaving it inert at the bottom of the barrel. That's why microseconds matter!

1. R.Henke and R.P.Thorbus, "The Arc Species Zoo," May 2021

2. R.Henke and R.P.Thorbus, "Parallel Arcs and Series Arcs," February 2022

3. A less-likely mode of arc-flash, referred to as "arc-over", results from metallic connection, or T-Arc-Flash. While relevant to EAFS design, T-Arc-Flash is deemed not relevant for this overview **4.** Arc Flash, https://en.wikipedia.org/wiki/Arc_flash, cited February 24, 2022

©2022 Arc Suppression Technologies. All rights reserved. All material presented is subject to change without notice. "NOsparc" is a registered trademark of Arc Suppression Technologies.

